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PROJECTSUMMARY

The objectiveof this researchprogramwasto developan innovative advancedsatel-

lite receiver/demodulatorutilizing surfaceacousticwave(SAW) chirp transformprocessor

and coherentBPSK demodulation.The algorithm of this SAW chirp Fourier transformer is

of the Convolve-Multiply-Convolve (CMC) type,utili71ngoff-the-shelf reflective array

compressor(RAC) chirp filters. This satellitereceiver,if fully developed,wasintended to

beusedasan on-boardmultichannel communicationsrepeater.

The AdvancedCommunicationsReceiverconsists of four units --(1) CMC processor,

(2) single sideband modulator, (3) demodulator, (4) chirp waveform generator and individ-

ual channel processors. The input signal is composed of multiple user transmission frequen-

cies operating independently from remotely located ground terminals. This signal is Fourier

transformed by the CMC Processor into a unique time slot for each user frequency. The

CMC processor is driven by a waveform generator through a single sideband (SSB) modula-

tor. The output of the coherent demodulator is composed of positive and negative pulses,

which are the envelopes of the chirp transform processor output. These pulses correspond

to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into

data, which are subsequently differentially decoded to form the transmitted data.

The coherent demodulation and detection of BPSK signals derived from a CMC chirp

transform processor were experimentally demonstrated and bit error rate (BER) testing

was performed. To assess the feasibility of such advanced receiver, the results were com-

pared with the theoretical analysis and plotted for an average BER as a function of signal-

to-noise ratio.

Another goal of this SBIR program was the development of a commercial product.

The commercial product developed was an arbitrary waveform generator. The successful

sales have begun with the delivery of the first arbitrary waveform generator.
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1.0 PHASE II OBJECTIVES

The objective of the Phase II program effort includes the design, fabrication, testing

and documentation of an Advanced Satellite Receiver/Demodulator using an innovative

transform processor and coherent QPSK demodulator. However, due to unexpected techni-

cal problems coupled with time and funding constraints a coherent BPSK Demodulator was

developed. The Phase II program will demonstrate, evaluate, and characterize a

receiver/BPSK demodulator as a proof of concept system for satellite communications.

The processor will demonstrate the chirp transform technique for optimally receiving and

decoding transmissions from many systems users.
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2.0 PROGRAM SUMMARY

2,1 preliminary. System Design Approach

Initially, following the CMC processor a coherent QPSK demodulator was selected

for implementation, in the satellite receiver. Optimal techniques for coherent demodulation

of QPSK signals are well known. These techniques involve carrier tracking (Costas loop,

quadruppling the QPSK signal followed by a phaselocked loop circuit, and remodulation

technique)[2,4], which can be difficult when dealing with bursted signals as is the case when

the QPSK signal is first passed through chirp transform processing (convolve-multiply-

convolve, CMC) prior to demodulation. For each channel the QPSK modulated signal com-

ing out of the CMC is within a narrow time span (in the order of 25 nanoseconds) repeated

at the frame rate of the chirp generator, which is made to be the same as the QPSK signal

symbol rate. Consequently, a fast carrier acquisition circuit is needed. The existing tech-

niques are not suitable for these type of bursty signals. In light of this problem, initially

differential phase shift keying (DPSK) was proposed, but not implemented due to an

expected 2.3 dB penalty in performance degradation[4]. In this case symbol decisions are

made based on two consecutive phases, with the assumption that the carder phase refer-

ence remains constant during the decision interval. Recent advancement in DPSK tech-

nique, however, showed that its performance can be improved by maximum likelyhood

estimation based on more than two transmitted phases[3]. Through computer simulation it

was shown that, for a QPSK signal, when symbol decisions are made based on 5 consecutive

transmitted phases, the performance penalty is reduced to 1 dB, which is more attractive

(see Figure 2-1). In reality, if a conventional coherent demodulation technique is used the

performance degradation would be disastrous due to the carrier tracking problem. There-

fore, the practical implementation of this technique, known as multiple symbol differential

detection (MSDD)[3], is recomendable. In this Phase II effort, however, a coherent QPSK

demodulation technique was considered.

-3-
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_- Computer Simulation Result of BER Probability versus Eb/No for Multiple
Differential Detection of QPSK Signals.

Although MSDD was recommended for QPSK signal demodulation, after thorough

consideration it is concluded that despite its advantages, this technique is difficult to imple-

ment because it necessitates the incorporation of several long delay lines (one symbol

period equal approximately 30 microseconds) accurate to within 5 nanoseconds, while each

channel only occupies a 25 nanoseconds interval. Such a delay line would normally be rea-

lized by acoustic wave devices, however, the required accuracy is extremely difficult to

achieve. Consequently a different approach is considered, that is one utilizing a math-

processor that computes the carrier phase reference in real time. It must be noted that as in

the case of conventional coherent demodulation, a phase ambiguity exists that must be

resolved utilizing differential encoding technique.

The mathematical representation of the received signal is as follows[2]:

s(t) =aicos _0t + bisin t_t -T/2 < t < T/2 (2.1)

The sine and cosine functions represent in-phase and quadrature-phase components

of the QPSK signal. The received signal is split into two paths, where each is multiplied by a

locally generated carrier signal having precisely the same frequency as the incoming signal
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as shown in Figure 2-2. It is clear that its phase is arbitrary relative to the received signal

phase. Without loss of generality this phase is represented by theta. The local oscillator

signal is denoted by:

sin (tot + e) (2.2)

The in-phase component is labeled I, and the quadrature-phase component Q. The

multiplication process generates 2_ frequency components that are suppressed by a lowpass

filter. By utilizing trigonometric identities the resulting products are as follows:

l-component: aisin(tot+e)costot + bisin(tot+0)sintot (2.3)

1/2 aisin e + 1/2 bicosO (2.4)

The shifted (90 degrees) version of this is:

190 = 1/2 aicos e - 1/2 bisin e (2.5)

O-component: aisin (o_t+ 0 ) sin tot + bisin(tot + e) cos tot (2.6)

1/2 aicos + 1/2 bisin (2.7)

The shifted (90 degrees) version of this is:

Q90 = -1/2 aisin e + 112 bicos e (2.8)

Define'Xic, XIS, Yic, and Yis as follows:

Xic = I90 + Q = aicos e

Xis = 1 - 090 = aisin e

Yic = I + Q90 = bic°s e

Yis = "I90 + O = bisin e

Subsequently, the following quantities are derived:

_: IlXll= .! (Xic 2 + XIS2) = Ilaill (2.9)

(II IIdenotes absolute value )

If Xic is not equal to zero, then e = tan'l(Xis/Xic)

and X= IlailI eJe, in this case chose 0 < e < 180°, and ai= Xis/sin e.

If Xic is equal to zero, then cos e = 0 and 0 = (2n + 1)x90 °, chose e = 90 ° then

a i = Xis.
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If Xis = 0, sin 0 = 0 and e = nxl80 °, choose 8 = 0, hence a i = Xic

l-component

IIYII -- J (Yic 2 + Yis 2) -- Ilbill

If Yic is not equal to zero, 0 = tan-l(Yis/Yic) and Y = Ilbill eJs, in this

case 0 < 0 < 180 °, and b i = Yis/sin.

If Yic is equal to zero, then cos e = 0, and 0 = 90 °, hence b i = Yis.

If Yis = 0, then sin e = 0, and e = nxl80 °,

choose a = 0, and bi = Yic.

The implementation concept of the above algorithim is shown in Figure 2-2. All the

user channels are demodulated by a QPSK demodulator, and the mathematical process of

obtaining the reference phase is done in parallel for each channel. Theoretically all chan-

nels can be processed by one super fast signal processor, however it is presently not eco-

nomical. Parallel processing would allow a processing time of up to 15 microsecond for

each symbol detection. The concept of the signal processor is shown in Figure 2-3. The

measured parameters Xic, Xis, Yic, and Yis are quantized by a set of Flash A/D converters

(ADC). The resulting quantities are stored in 4 pairs of 4xlK high speed memories. For

each channel (within a 25 nanosecond slot) two samples are taken and stored by docking

the converters at twice the signal bandwidth (80 MHz). For a communication system com-

prising 512 users (cahnnels), 1 Kbyte memory is sufficient. The I and Q data are taken out

of the memories at 15 microsecond intervals and processed within the same period by

moderate speed digital signal processors. Consequently, each channel will be equipped with

a pair of signal processors (I & Q) as shown in Figure 2-3.

The effect of differential encoding to resolve reference carrier phase ambiguity is

tested by assuming various possibilities of the received phase. In OQPSK (off-set QPSK)

the transmitter sends the I-symbols (in-phase) and Q-symbols (quadrature-phase) off-set by

one data bit.
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The outcome of the reference phase tracking circuit contains the following ambiguities:

Sent Received Comment

1. I Q I O No problem

2. I O -I -O 180 ° out

3. I O O (-Q) -I (I) These two cases are

basically the same

4. I O O I

5. I O -O -I

Case 2 through 5 are tested by sending a data pattern, split into I and Q streams, and

differentially encoded prior to transmission. In the receiver an I and a Q stream are

detected based on the recovered reference phase that contains the phase ambiguity.
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Subsequently, the I and Q streams are differentially decoded and combined to reconstruct

the transmitted data.

Definition of symbols:

I = Transmitted in-phase symbols

Q = Transmitted quadrature-phase symbols

Id = Differentially encoded I

Qd = Differentially encoded Q

IX = Received I-stream

Qr = Received Q-stream

Ixd = Differentially decoded Ix

Qrd = Differentially decoded Qr

Transmitter:

Data: 11010111001011

I: 1001 011

Q: 111 1001

Id: 1 0 0 0 1 1 0

Qd: 10 1 01 1 1

1

0

Receiver:

Case2 Ix = -Id, Qr = -Od

Ir: 0 1 1 1 0 0 1 0

Qr: 0 1 0 1 0 0 01

Ird: 1 0 0 1 0 1 1

Qrd: 1 1 1 1 0 0 1

Data: 11010111001011
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Case3 Ir = -Qd, Qr - Id

Ir: 0 1 0 1 0 0 0 1

Qr: 1 0 0 0 1 1 0 1

Ird: 1 1 1 1 0 0 1

Qrd: 1 0 0 1 0 1 1

Data: 11010111001011

Case4 Ir = Qd, Qr = Id

Ir: 1 0 1 0 1 1 1 0

Qr: 1 0 0 0 1 1 0 1

Ird: 1 1 1 1 0 0 1

Qrd: 1 0 0 1 0 1 1

Data: 11010111001011

Case5 Ir = -Qd, Qr = -Id

Ir: 0 1 0 1 0 0 0 1

Qr: 0 1 1 1 0 0 1 0

h'd: 1 1 1 1 0 0 1

Qrd: 1 0 0 1 0 1 1

Data: 11010111001011

As can be seen in the above test that differential encoding is effective in resolving

phase ambiguity. Differential encoding must be implemented on the I and Q streams

respectively. Note that data randomization (for bit synchronization purpose), if required,

has to be done prior to differential encoding.

2,2 Pr0blcms Encountered

For the CMC processor a HIRAC filter was designed, however, because of the high

nonrecurring cost demanded by the vendor for fabrication and long delivery time, it was not

implemented. For demonstration and proof of concept a RAC filter was implemented. This

filter has a delay of 80 microseconds and 20 MHz bandwidth, resulting in a time-bandwidth
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product of 1600.

The digital channel processor to recover the data from the I & Q demodulated sig-

nals, and circuits for data reconstruction were designed but not implemented, due to unex-

pected complex circuits required for sampling and processing the narrow pulses. These

difficulties would have caused a delay and excessive cost to this Phase II program, beyond

the budgeted time and money. Consequently, to obtain meaningfull results within the speci-

fied time schedule a coherent BPSK demodulator was developed, built, and tested.

2.3 Final Implementation and Experiments

In light of the above mentioned problems a receiver was designed, developed, and

tested, which comprises a CMC processor, a coherent BPSK demodulator, and a threshold

detector for data reconstruction. To resolve phase ambiguities differential encoding and

decoding are included. For testing purpose a BPSK modulator was designed as a test

source. Subsequently, BER performance of this system was tested for various input signal

Eb/No, where Eb is the energy per bit and No is the noise density. Gaussian noise is gener-

ated from a Hewlett Packard diode noise generator, followed by a bandpass filter and

amplifier. Fb/ed attenuators are used to vary the Eb/No. The following technical specifica-

tions for the receiver are established during test:

a. Type of modulation:

b. Data symbol rate:

c. Type of demodulation:

BPSK

6.25 KBPS

Coherent BPSK

d. CMC processor TB-product: 1600

e. Chirp filter bandwidth:

f. Chirp filter slope:

g. Chirp filter type:

h. Chirp repetition period:

20 MHz

.253 MHz/microsecond

Reflective array compressor

160 microseconds

In this experiment, the data rate chosen was derived from the time delay and band-

width of the RAC filter. As mentioned earlier the symbol period is made equal to the chirp

-11-



period. Since the RAC filter chirp slope is fixed (.253 MHz/microsecond) and the time

delay of each filter is 80 microsecond, the chirp repetition rate required for a CMC proces-

sor must be 160 microseconds, hence the data rate is 6.25 KBPS. As a result of the prestruc-

tured technical parameters, the expected chirp transform pulsewidth is approximately 200

nanoseconds. At the output of the CMC processor, a chirp transform pulse appears every

160 microseconds (i.e. at the chirp repetition period). Its position in reference to the start of

each chirp depends on the input frequency. Since the received symbol rate is equal to the

chirp period, the polarity of the chirp transform pulses is directly related to each data sym-

bol received. Therefore, the data can be recovered from the chirp transform pulses. To

resolve phase ambiguities, differential encoding and decoding are implemented on the data

respectively before transmission and after detection.

Coherent demodulation is obtained by injecting the BPSK demodulator with a signal

that is in-phase with the received signal carrier.

-12-



3.0 WORK ACCOMPLISHED

The tasks, as defined in the statement of work, were slightly modified with the concur-

rent of the technical program office of NASA/Lewis. As a result of these, following tasks

had been completed. The tasks were basically reflected in the system diagram shown in

Figure 3-1.

1) The Design of Hyberbolic Inline Reflective Array Compressor Filter.

2) Development of Arbitrary Waveform Generator (Fabricated and Tested).

3) Demonstration of Chirp Transform Processor utilizing Amerasia's inhouse compo-

nents.

4) Development of BPSK demodulator (Built and Tested).

5) Development, demonstration and documentation of system software to optimize

the chirp waveform generated by the arbitrary waveform generator.

Utilizing the above listed sub-systems, system tests were conducted. In this test, Bit

error rate as a function of input signal to noise ratio was measured and documented. To

accomplish this test, a test source was built in the form of a BPSK modulator. The system

test setup is shown in Figure 3-31.

3,2 Satellite Communications Receiver System Desima

The detailed Satellite Communications Receiver System block diagram is shown in

Figure 3-1. The RF portion normally associated with satellite receivers is not included in

this design. It is assumed that the signal input to the receiver has been down-converted to

the IF frequency centered at 100 MHz occupying a bandwidth of 32.768 MHz. This band-

width covers 512 user frequencies each separated by 64 KHz. For proof of concept two user

channels are included in the design. These channels operate in parallel and are physically

identical. The main receiver, is designed to process the entire user population. However,

each user channel must be equipped with its own channel processor, in this ease two chan-

nel processors are provided. To resolve phase ambiguity in the demodulator the transmitted

-13-
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data is assumed to have been differentially encoded.

The Advanced Communications Receiver consists of four units and individual Chan-

nel Processors. The input signal is composed of multiple user transmission frequencies

operating independently from remotely located ground terminals. This signal is processed

by the CMC Processor to transform each user frequency into a unique time slot. The CMC

Processor is driven by a chirped local oscillator, which is derived from the SSB Modulator.

The modulating signal to the SSB Modulator is a chirp waveform generated by the Chirp

Waveform Generator (AMT-250). The QPSK Demodulator is the fourth major unit. The

transformed QPSK signal is treated as a complex signal and coherently demodulated by

means of a real time math-processor to obtain continuous phase tracking. The output of the

demodulator is digitized and delivered to the Channel Processors. Each Channel Processor

computes the carrier reference phase and makes symbol decisions. It also does the neces-

sary differential decoding and I & Q data combining to reconstruct the transmitted data.

3,2.1 CMC Processor

The composite input signal to the CMC Processor is specified at a maximum level of

-20 dBm. For 512 simultaneous channel users this means -47 dBm per channel in order not

to overload the system. Comment: Since in practice the probability of all users operating at

the same time is not 100 %, it would be possible to allow a higher level per user channel

based on user statistics. However, this issue is beyond the scope of this project, therefore,

will not be discussed any further.

The CMC Processor utilizes surface acoustic wave (SAW) devices that are inherently

lossy (approximately 30 dB). To reduce the noise floor of the receiver a low noise amplifier

is incorporated at the input. Linearity consideration of the CMC Processor is extremely

important. In the front-end amplifier up to 512 different frequencies may be present at a

given time. Therefore, any intermodulation products that falls within the receiver band-

width would cause interference. The front-end amplifier is chosen to generate 3rd order

intermodulation products that is less than 59 dB below the desired signal when fully loaded.

-14-



I

In the mixer this problem is exacerbated by the presence of several overlapping chirp signal

frequencies. Therefore, a high level mixer is selected for this purpose. At the operating

input level (-29 dBm) the third order intermodulation products are less than 110 dB below

the signals. The choice of other amplifiers is based on the same linearity consideration. As a

consequence of the input signal operating frequency band (83.6 MHz to 116.4 MHz) the

chirped local oscillator frequency range is chosen within 167.2 MHz to 232.8 MHz and the

upper sideband of the mixer is selected (283.6 MHz to 316.4 MHz). The resulting frequency

plan guarantees adequate frequency separation among the inputs and output of the mixer,

which simplifies the filtering requirement necessitated by nonideal isolation properties

among the mixer ports.

The input SAW filter has a down-chirp response, with a slope of approximately 2.1

MHz/microsecond, and a time-bandwidth product of 512 which is equal to the number of

resolvable frequencies. The chirped local oscillator has an up-chirp characteristic, with an

opposite slope, and a time-bandwidth product of 2,048, i.e. 4 times the SAW filter time-

bandwidth product. The output SAW filter has identical characteristics as the input filter,

except its operating frequency is centered at 300 MHz. The SAW filters have a bandpass

characteristic that approximates a rectangular shape, hence ideal for out-of-band spurious

and interference rejection.

_;,2,2 HIRAt7 Filter Design Study

The HIRAC development objective is to achieve a time-bandwidth-product of at least

3000. A conceptual layout is shown in Figure 3-2 in relation to a 3-inch LiNbO 3 wafer. Two

transducers, one for launching and the other for receiving the sound waves are indicated by

lines at the bottom of the wafer. Centrally located is the reflective array which causes the

waves to be reflected from one transducer to the other. The incidence angle is 22.5 ° and

corresponds to a direction of zero beam steering for the trigonal LiNbO 3 material. Also

shown is the size of the enlarged Gerber layout border which is 19x25 inches before being

reduced by 10X.
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The complete design is shown in Figure 3-3. In this design four transducers are to be

fabricated in such a manner as to generate an up-chirp and a down-chirp filter using the

same reflective array.
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The design of the transducers is complex, since most if not all of the important design

parameters are determined by the transducer electrodes. In order to eliminate finger resis-

tance effects and to achieve a hyperbolic frequency distribution, the transducers are split

into channels as shown in Figure 3-4. Here the X dimension is greatly exaggerated com-

pared with the Y dimension so that the fingers of the electrodes are shown clearly.

rlrl'l III II II II,I!

, ,! Ill|llilllllllllllll, !| i.Jll i i m I.! i i I i

rt,lJlll iiiiiiiiii
|rlllllllllt Illlllllli

ol,l..ll .llillul',
IIIIii1111t Ililti|ttt

.1111111111illlttttli

I f

i'

Figure 3-4:- Multichannel Transducer Layout, X-span: O,Y-span: 0.2 inch.

Figure 3-5 shows a section of an actual transducer where the electrodes are drawn to

scale and lying at the proper 22.5 ° angle so as to launch the waves at the proper reflective

angle to the dispersive reflective array.
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_:- A Section of An Actual Transducer
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3.2.3 Chirp_ Waveform Generator

The Chirp Waveform Generator (AMT-250) is fully digitally implemented, combin-

ing high speed logic and signal processing techniques. A functional block diagram is shown

in Figure 3-6 and a picture of the AMT-250 is shown in Figure 3-7. The design is a modifi-

cation of an existing product developed by Amerasia Technology. The frame rate of this

unit is 32 KHz, controlled by an external clock that is in synchronism with the sampling

signal of the A/D converter located in the QPSK Demodulator. The time frequency slope

of the chirp is programmable to match the SAW filter chirp slope. Temperature effect

varying the SAW filter slope is compensated by software implementation in the Chirp

Waveform Generator.

In Figure 3-6 only one of the two channels (I or Q) is shown. Each channel contains

eight waveform memory chips labeled RAM A through RAM H. The RAM chips contain

8-bit waveform pixel data which is loaded into the RAMs from the microprocessor on the

chirp interface board. A 12-bit counter selects the appropriate address of each RAM

sequentially. The outputs from the RAMs are interleaved. Interleaving of RAMs A, B,

through H is explicitly shown in the diagram. The interleaved RAM outputs are loaded in

parallel into two 40-bit shift registers which are docked into a high speed video digital to

analog converter (DAC) which, subsequently, generates I and I* data with 75-Ohm output

impedance. The other channel generate Q and Q* data in the same manner.

The chirp waveform generator board is a three layer board. The top view of the board

layout is shown in Figure 3-8. In the center of the board four shift registers are shown.

These registers provide parallel-in, and serial output at speeds up to 250 MBPS. Along the

upper portion of the board are 16 RAM chips (U6-U21) which provide waveform memory.

These RAMs are organized as 8Kx8 bits and a total memory of 64K for I and 64K for Q is

possible. Just below and adjacent to the RAM arrays is a second row of 16 octal tri-state

buffers used to put RAM data output onto the local buss. A local counter is used to derive

RAM addresses (U1-3).
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A computer interface board, containing a GPIB controller, is added to the control

input of the arbitrary waveform generator, which allows for universal programmable wave-

form user interface. The circuit diagrams for GPIB interface are shown in Figures 3-9 and

3-10. Starting with Figure 3-9, U1 is the heart of the system microprocessor (Intel 80188).

This microprocessor is a highly integrated member of the 8086 family. It was selected for its

ability to generate I/O and memory selects. It also handles interrupt requests (priority) and

contains an on-board clock. As a result the number of interface chips required to imple-

ment an imbedded microcontroller is minimized.

Program memory resides in the EPROM (U7, 27C512) which allows for 64K of pro-

gram memory. Data memory is up to 64K and is contained in RAM chips U3-Ull. Since

the microprocessor u_es multiplexed data and address technique, U2 provides the neces-

sary latching of the low address bytes. Chip selects are generated by the decoder chip U12.

The second part of the GPIB circuit, shown in Figure , contains the I/O peripherals which

implements the GPIB, RS232, and chirp board interface functions. U13 is the GPIB inter-

face chip which handles the necessary handshaking associated with the buss architecture.

U18 and U19"are called buss interface chips that provide the correct routing and direction

(transceivers) of the bi-directional GPIB signal lines. U14 implements the functions of the

RS232 serial buss. U21 is a level shifter which translates the internal TTL levels to standard

RS232 levels. Finally U15, technically a programmable peripheral interface chip, is used to

download the chirp data to the chirp waveform generator board. Therefore, its output is

compatible with the buss definition used in the chirp waveform generator board.

A second addition to the chirp waveform generator is an external synchronization

circuit, called the SYNC/CLOCK and trigger circuit. The purpose of this circuit is to allow

the chirp waveform repetition to synchronize with an external clock. In the advanced satel-

lite receiver the chirp waveform has to be synchronized to the symbol timing of the received

data.
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The SYNC/CLOCK circuit is shown in Figure 3-11A and B. The clock to the address

counters, on the chirp board, is gated by the doubly latched trigger signal from the trigger

circuit shown in Figure 3-1lB. This signal is asynchronous to the local clock of the chirp

board. While awaiting a trigger signal, the address counters are held at the first memory

address. After the trigger goes high, the next rising edge of the local clock causes the secon

subsequent data values to be output. The trigger signal must return to the low state prior to

the end of the chirp waveform frame. Also the trigger pulsewidth must be greater than 100

nanoseconds for reliable operation.

3.2.4 SSB Modulator

In the SSB Modulator, shown in Figure 3-12, the baseband chirp waveform is trans-

lated to the desired operating frequency. The SSB Modulator has in-phase (I) and quadrat-

ure-phase (Q) inputs as required by complex waveforms. Each input is differentially config-

ured to suppress any noise or undesired spurious components. Two doubly balanced mixers

(M1 and M2) are used to modulate the I and Q signals separately. The I and Q local oscilla-

tor drives are derived from a common phaselocked oscillator (PLO) and split into sine and

and cosine related signals by a quadrature hybrid circuit (HY1). The mixer outputs are

combined and amplified to drive the high level mixer in the CMC Processor.

After further system analysis it is found that to reduce the negative effect of various

oscillator frequency instability, the frequency sources to generate the 200 MHz and 300

MHz signals (see the system diagram in Figure 3-1) must be derived from a single stable

dock. The clock frequency selected is 20 MHz or 40 MHz. The circuit implementation for

the latter case is shown in Figure 3-12, which depicts the SSB Modulator circuit. The

frequency stability of the reference clock is better or equal to .1 PPM. Consequently, the

receiver system frequency stability is only dependent on the stability of the reference dock.

As shown in Figure 3-12, the 200 MHz source is derived from a 20 MHz reference signal

which in turn is generated, by frequency division (U7), from a 40 MHz crystal oscillator
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(Y1) in a phase locked loop (PLL). A 200 MHz signal is generated by the VCO (voltage

controlled oscillator). The VCO output frequency is divided by 10 and compared with the

reference signal in the phase comparator (U6). The output of the phase comparator con-

trolls the frequency of the VCO via U3. U3 and its associated circuitry establish the loop

gain and frequency response of the PLL The output of the PLL drives the in-phase and

quadrature-phase balanced mixers (M1 and M2) of the SSB Modulator. The outputs of

these mixers are combined by HY2, amplified, and routed to the CMC processor (see Fig-

ure 3-1). HY2 is an in-phase power combiner. The baseband inputs of mixersM1 and M2

are in a balanced configuration to cancel any DC offset created in the chirp waveform gen-

erator. Finally, the SSB Modulator will be implemented on a printed circuit board and

packaged in an Aluminum enclosure for RF shielding.

The 300 MHz frequency source for the QPSK demodulator (see Figure 3-13) is gen-

erated in the same manner. In this case a 300 MHz VCO is locked to the 20 MHz reference

signal.
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The performance of the SSB Modulator is dependent on the performance of the

available circuit components. Figure 3-14, shows a simplified block diagram of the modula-

tor, where only components relevant to its performance are shown. These components are

as follows:

(1) Input Hybrid : Model PSCQ-2-250

(2) Frequency Mixers: Model SBL-1

(3) Output Power Combiner: PSC-2-1

erformance of each of the above components are limited by the following manufacturer's

pecifications:

(1) Input Hybrid: Phase error is .8 ° Typ., 4 ° Max.

Amplitude error is .6 dB Typ.,

1.5 dB, Max.

(2) Frequency Mixer: RF to LO leakage,

typically -40 dB, -35 dB Max.

(3) Power combiner: Phase error is .5 ° Typ.,

4° Max.

Amplitude erroris.02dB

Typ.,.3dB Max.

In the analysistheinputsignalamplitudeisnormalizedtoone.Without lossofgener-

alitythe inputlocaloscillator(LO) signaltothemodulator isrepresentedby sin(tot),as

shown inFigure3-15.The Iand Q inputsaredistinguishedby a 90° phase shift.These sig-

nalsaremodelled assin(tomt+ 0)and cos(tomt+ e) respectively.ReplacingtheIsignalby

cos(tomt+ 0)willnotchange theoutcome oftheanalysis,because a 90° phase shiftwould

resultina quadraturecomponent representedby -sin(wmt+ e).

The outputoftheinputHybrid atpointP (seeFigure3-14)isphasewiseunaltered,

whileitsamplitudeisequalto.707.Therefore,atpointC we have:

.707 sin(tot) sin(tomt + e) (3.1)
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The phase shifted version of the input signal is cos(wt), hence the signal at point D is:

.707 cos(_t) cos(wmt + e) (3.2)

The output combiner adds these two signals to produce:

.707 [sin(wt) sin(wmt + O) + cos(wt) cos(wmt + 0 )] (3.3)

This is simply the lower sideband (LSB):

.707 cos[(w-_m)t-o ] (3.4)

If the I and Q inputs are reversed then:

At point C we get:

.707 sin(wt) cos(wmt + O) (3.5)

And at point D:

.707 cos(wt) sin(wmt + e ) (3.6)

Combining (3.5) and (3.6) and applying a simple trigonometric identity we obtain the -

upper sideband (USB):

.707 sin[(w +_m)t + e ] (3.7)

As a result of the above analysis the desired sideband can be selected by making the

appropriate I and Q connections as shown in the following table (Table - 1).

Table- 1

Input to Output

A B LSB USB

I Q

O I

X

X

From the above analysis it can be concluded that under ideal conditions the modula-

tor output:
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(1) Does not contain any carrier components.

(2) Contains only one sideband.

Figure 3-15 shows the SSB Modulator model containing amplitude and phase error

parameters introduced by nonideal components. K 1, K 2, and K 3, are amplitude errors that

can be equal or less than 1 but greater than 0. These parameters are associated with the

input Hybrid, output power combiner, and input I and Q amplitude error, as shown in Fig-

ure 3-15. The phase errors are represented by e l, e 2, and e 3, which are associated with the

Hybrid, power combiner, and input I/Q phase errors. The design implementation is such

that K 2 and e 2 are adjustable to the point that their effect can be ignored. Subsequently, in

the foUowing analysis these two error parameters are neglected. The frequency mixer

unbalance condition is treated as an RF to LO leakage and analyzed separately.

The analysis follows the same steps as described above. Hence, at point C we obtain:

.707 sin(tot) sin(tomt + 0 ) =

.707{cos[(to_m)t-0 ]- cos[(to + tom)t + 01} (3.8)

and at point D:

.707K 1 cos(tot + el) cos(tomt) =

.707Kl{cos[(to.Om)t+el.0 ] + cos[(to +tom)t+el+0]} (3.9)

Combining (3.8)and (3.9), while introducing the amplitude unbalance factor (K3) and

phase error e 3, the output signal is obtained:

.707{cos[(to_m)t-0 ] - cos[(to +tom)t + 0 ]} +

.707K1K 3 {cos[(to-_ m)t + e 1-0 ] + cos[(to + tom)t + e 1 + 0 ] } [angle e3]

The LSB and USB components are vectorially added. In this ease the LSB component is the

desired signal, while the USB component is undesired. Since e I and e 3 are phase shifts, for

worst case calculations it is valid to combine the two phase errors (e I + e3). The vector

addition gives the following results:
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The desired LSB component:

.707 cos[(w-Om)t-0 ] {1 + K1K3[angle (e 1 + e3)]} =

.707 cos[(_0-_m)t-e ]J { 1 + (K1K3)2 + 2K1K3cos(e 1 + e3)} (3.10)

The undesired USB component:

.707 cos[(_ +wm)t + e ] {1 - K1K3[angle (e I + e3)]} =

.707cos[(_0 +_0m)t+e]j { 1 + (K1K3)2-2K1K3cos(el+e3)} (3.11)

The amplitude ratio between the undesired and desired (U/D) component is:

J [1 + (K1K3)2-2K1K3cos(e 1 + e3)]/,] [1 + (K1K3)2 + 2K1K3cos(el +e3)] (3.12)

From the given components specification the error parameters were computed:

Typical performance,

K 1 - .9333 (-.6 dB)

K3 - .9977 (-.02 dB)

e I + e3 = 1.3 °

Substituting these values into equation (3.12) we obtain:

U/D = .0373

]In dBs. U/D = -28.6 dB

Worst case performance,

K1 - .84 (- 1.5 dB)

K 3 = .966 (-.3 dB)

e I + e 3 - 8°

Hence, -

U/D = .1253

]In dBs. U/D = -18 dB

Frequency mixer unbalance results in an unperfect RF to LO port isolation, which is

typically 40 dB and in the worst case 35 dB. These quantities and the U/D values just calcu-

lated will be used in the CMC system performance analysis.

1
l'
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The performance of the SSB-Modulator is evaluated for undesired-to-desired signals

(U/D) ratio, carrier frequency leakage (200 MHz), and frequency response. The test set-up

is shown in Figure 3-16. For this purpose a test signal source has to be developed which will

generate the I and Q signals to drive the SSB-Modulator inputs. The I and Q signal

frequencies (fI and fQ) range from 0 to 35 MHz.

A test source was designed and built to test the performance of the SSB Modulator.

The schematic diagram of the test source is shown in Figure 3-17. It consists of a Hybrid

circuit to produce the 0 ° and 90 ° phase shifts. Frequency down conversion is necessary

because it is difficult to find Hybrids that can operate from 0 to 35 MHz while simulta-

neously producing the desired phase shift with small amplitude and phase error. For this

reason a Hybrid (PSCQ-2-400) which operates from 250 to 400 MHz is used. In the Test

Source it is operated at a constant frequency (325 MHz), which acts as the local oscillator

(LO) signal. This signal is down converted by mixers and an RF-signal ranging from 325 to

360 MHz to produce the desired I and Q signals (0 to 35 MHz). Identical lowpass filters at

the ouputs of the mixers suppress leakages from the LO and RF ports of the mixers. These

filters are also designed to provide 50 to 100 Ohms impedance transformation, because the

mixer output is 50 Ohms while the SSB-Modulator I and Q inputs are 100 Ohms. These

outputs are connected to the SSB-Modulator via balanced twisted pair lines. The output of

the Test Source is shown in Figures 3-18 and 3-19. Figure 3-18, shows the frequency spec-

trum which contains third harmonics of the desired signal, while Figure 8 shows the 90 °

phase shift between the I and Q signals. Since the Hybrid and Power divider used in the

test circuit contain phase errors and amplitude unbalances ( 4 ° and .9 dB maximum) the

output I and Q signals are not perfect. Consequently, it will make the SSB-Modulator

appear toperform worse than its actual performance. As will be shown later the third har-

monics of the I and Q signals show up at the output of the SSB-Modulator as spurious sig-

nals (see Table-2).
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Table-2

fR fI or fQ LSB U/D Spurious* due

(MHz) (MHz) (dBm) (dB) to test signal

Comment

327.5 2.5 -15 -26 -39

330 5 -15 -26 -39

332.5 7.5 -15 -26 -40

335 10 -15 -26 -40

337.5 12.5 -15 -26 -41

340 15 -15 -25 -42

342.5 17.5 -15 -24 -50

345 20 -15.5 -24 -47

347.5 22.5 -16 -24 -48

350 25 -16 -25 -50

352.5 27.5 -16.5 -26 -50

355 30 -17 -28 -50

357.5 32.5 -17 -24 -50

360 35 -17 -26 -50

USB/LSB

USB/LSB

USB/LSB

USB/LSB

USBfl_.,SB

(*): Spurious signal related to fc ± 3(fR'fL)

Previous analysis showed that the expected U/D ratio of the SSB-Modulator, due to

component phase errors and amplitude unbalance, is in the worst case -18 dB. The carder

frequency (200 MHz) leak of the mixers, in the SSB-Modulator, is maximum 35 dB below

their LO level, which is 10 dBm. Consequently, taking into account the gain (12 dB) of its

output amplifier the maximum expected carder leak at the output of the SSB-Modulator is

-13 dBm. The measured carrier leak output is -25 dBm, better than expected. As can be

-37-



seen from the test results in Table-2 and in Figure 3-20, the U/D (in this case Upper Side-

band - to - Lower Sideband ratio) is -24 dB, that is, better than the expected worst ease. In

addition, the test signal is not perfect as mentioned earlier. Figure 3-20, also shows the

amplitude-frequency response (LSB) of the SSB-Modulator, which is flat to 17.5 MHz and

sligthly roUs-off from 20 to 35 MHz. The spurious signals, fc ± 3(fR'fL), is contributed by

the third harmonic components of the test signal, thus not related to the performance of the

SSB-Modulator.

_,2,50PSK Demodulator

The signal input to the QPSK Demodulator is amplified to a convenient level as

shown in Figure 3-21. Each user channel data is confined in a 30.5 nsec time slot repeated

every 31.25 microseconds hence the signal bandwidth at this point is 32 MHz. Adjacent time

slots belong to other user channels repeated at the same rate. Since the signal is complex, its

in-phase and quadrature-phase components are demodulated separately and subsequently

combined. This is accomplished by generating the I, Q, and their shifted versions, i.e. 190

and Q90" Four doubly balanced mixers are used for this purpose. Each mixer is driven by a

sine and cosine related signal derived from a common 300 MHz oscillator via quadrature

hybrid circuits, as shown in Figure 3-21. The outputs of the mixers are filtered, to remove

harmonic frequency components, and combined in pairs as defined in Figure 4.0 by resistive

combiners. Resistive combiners are used to establish an operating bandwidth down to the

DC level. The combined outputs are digitized by 6-bit flash A/D Converters (ADC),

sampled at the Nyquist rate. The 6-bit ADCs provide 36 dB resolution. The sampling

frequency is synchronous with the Chirp Waveform Generator frame rate in order to guar-

antee optimum point sampling. For each user channel two samples per frame are taken to

make a total of 1,024 samples per frame. These samples are stored in 6 x 1K RAMs (high

speed buffers), each of which is composed of two 4 x 1K RAMs. The samples are kept

within the RAMs for a period of 31.25 microseconds during which the reference phase must

be computed and symbol decisions made for the I & Q data.
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3.2.5.1 Imt)lementation of the OPSK Demodulator

The QPSK Demodulator is driven by a 300 MHz Phase Locked Oscillator (PLO). The

PLO is locked to a 20 MHz reference generated by a temperature compensated crystal

oscillator (TCXO) located in the SSB Modulator. In doing so the frequency stability of the

receiver is improved, which is important for carrier tracking.

The detailed circuit of the QPSK Demodulator is shown in Figure 3-21. The transs-

formed output waveform from the CMC-Processor is composed of an RF carder (300

MHz) embedded in a sinx/x envelope. The level of this signal is -34 dBm, whi_ is amplified

to -7.3 dBm by RF amplifiers U10 and Ull. After amplification a small portion (-20 dB) of

this signal is fed to a temperature compensation circuit, via the 20dB-coupler HY2. The

larger part of the signal is sent to the demodulator, which comprises power hybrids, split-

ters, and balanced mixers. The demodulator detects the signal in each quadrant of the

QPSK signal constellation. This is accomplished by splitting the input signal into I & Q

(in-phase and quadrature-phase) components via hybrid HY3. The I component is further
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divided into two in-phase signals by HY4, which form the input to a pair of balanced mixers

(M1 and M2). The Q component is treated the same way by HY5, and the resulting signals

form the input to mixers M3 and M4. In the balanced mixers, the I and Q signals are multi-

plied by signals fed into their LO inputs. The output of these mixers are at the baseband

level. Since the LO signals are also in in-phase and quadrature-phase forms, the mixers'

outputs are also in in-phase and quadrature-phase forms. These LO signals are derived via

hybrid HY6 and power splitters HY7 and HY8. By careful inspection of the demodulator

circuit in Figure 7.6-1, it is easy to show that the outputs of mixers M1, M2, M3, and M4,

that is I, 190, Q, Q90, are in quadrature relationship. The purpose of the lowpass filters at

the output of each mixer is to suppress any RF frequency leak through the mixers. The fil-

tered baseband outputs are processed by the following tracking and decision circuits.

3.2.5.2 300 MHz PLO

The detailed schematic diagram of the 300 MHz PLO is shown in Figure 3-13. The

PLO is based on a conventional phase locked loop design. It is composed of a voltage con-

trolled oscillator (VCO) Y1, frequency dividers U2 and U3, digital phase comparator US,

and DC-amplifier/filter U8. The 20 MHz reference signal is upgraded by a TTL line

receiver U7, which feeds one of the input ports of phase comparator U5.

Initially, the VCO is tuned to approximately 300 MHz a portion of which, derived by

directional coupler (10 dB) HY1, is fed into frequency dividers U2 and U3. These

frequency dividers are ECL devices, which divides the input frequency by 3 and 5, respec-

tively. The output frequency from the dividers, 20 MHz, is compared to the reference

frequency by phase comparator U5. Prior to entering the phase eomparator this signal is

converted from ECL to TTL format. An error signal is generated by U5 is amplified and

filtered by U8. The filter sets the loop response of the PLO. Subsequently, the DC signal

from U8 corrects the frequency of the VCO untill the error signal is reduced to zero. At this

point the PLO is locked to the reference (20 MHz) signal, and its stability is e0ntrolled by

the TCXO. The output (13 dBm) of the PLO is filtered by FL1, which is a bandpass filter
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centered at 300 MHz.

3,2,6 Channel Processor

The Channel Processor receives fresh data every 31.25 microseconds and computes

the carrier reference phase and makes symbol decisions within that period. The I and Q

data are processed separately and the results are routed to the data decoder. The data

decoder simply converts the symbols produced in the form of narrow pulses, by the signal

processor, into its original form at the symbol rate (32 KHz). The recovered I and Q data

are subsequently differentially decoded and combined in a parallel-to-serial combiner

clocked at 64 KHz to form the final data output.

A block diagram of the digital channel processor is shown in Figure 3-22, consisting of

four A/D converters (TDC1029). These converters operate at a sampling rate of 65.536

MHz and drive identical circuits for each channel. For demonstration purpose only two

channels are implemented. The design of the channel processor is dictated by the QPSK

signal timing architecture after demodulation. A timing diagram outlining this architecture

is given in Figure 3-23. The first line of the diagram represents the chirp transform pulses

after demodulation. Information from any channel appears in a time multiplexed order

every 15.536 usec (this corresponds to half the symbol period of QPSK data; the symbol

rate is 32 KSPS for a bit rate of 64 KBPS). Because the symbol period is 31.25 usec and the

sampling rate is 65.536 MHz, while the chirp transform pulsewidth is approximately 30

nanosec, thereare four samples of each QPSK symbol in any one channel. The second and

third lines in the diagram show the two sample docks, i.e. CLK-A and CI.K-B, and their

timing relationship to the chirp transform pulses. The fourth and subsequent lines show the

clock, data andcontrol waveforms on an expanded scale. Note the data latency of three

clock cycles in the ADC. The following events can be seen from the timing diagram:
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Sample 1-2 interval:

Sample 2-3 interval:

Sample 3-4 interval:

15.259 nanosec

15.610/asec

15.259 nanosec

Obviously the short time (15 nanosec) between samples 1 and 2 does not allow suffi-

cient time to process the samples as each is received, however, the relatively long interval

between samples 2 and 3 (15 usec) allows ample time for processing.

The delay from the start of the chirp transform pulse to the first sample is 15.259/2

nanosec, so that timing jitter must be substantially less than 7.6 nanosec to avoid sampling

errors.

Based on the above technical considerations it is found necessary to store the samples

prior to processing. A suitable realization is to utilize four 6-bit latches to store samples 1

and 2, followed by samples 3 and 4. These latches must be 100K ECL devices to reduce

timing error due to propagation delay variations and finite risetime. As shown in Figures

3-24 and 3-25. Each sample of the chirp transform pulses Xic, Xis, Yic, and Yis, derived by

the QPSK demodulator, is processed by an algorithm as described in paragraph 2.1, by

using the two 6-bit samples to form a 12-bit address into a look-up table stored in a ROM.

An additional advantage of this approach is the flexibility of modifications by simply pro-

gramming a new ROM table. The intermediate results from the table look-up are clocked

into a state machine whose transitions depend on the look-up results. After being clocked

for each sample pair, the summer outputs a logic "1" unless at least three samples were logic

"0". The I and Q data thus obtained are interleaved in the multiplexer and input to a differ-

ential decoder. The recovered data is taken from the decoder output. It must be noted that

in this whole process data clock has been retrieved independently.

The Xic, Xis, Yic, and Yis inputs are each converted into 6-bit digital values in four

identical circuits as shown in Figures 3-24 and 3-25. These four input signals derived from

the QPSK demodulator are digitized in the 6-bit A/D converters U3, U4, U10, and U11,

that are clocked at 65.536 MHz. The op-amp and emitter follower circuits provide temper-
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ature stable upper and lower reference voltages to the A/Ds and set the input signals in the

middle of the conversion range. The ECL digital outputs are bussed to the channel proces-

sors, one of which is shown in Figures 3-26 and 3-27.

Each 6-bit output is latched at times corresponding to samples 1 and 2 or 3 and 4 of

the desired channel. Each channel uses eight, ECL latches U1 to U8 as shown in Figure

3-26. The 100K family of ECL logic is used because the subnanosecond propagation delays

and rise/fall times are sufficiently small to maintain nanosecond timing accuracy. After the

second and fourth samples there is approximately 15 #sec to process the data. Conversion

to TTL levels is done by the 100125 ICs, U9 to U16, to form 12-bit addresses into the algo-

rithm look-up ROMs shown in Figure 3-27. For each sample the output of the algorithm is

either a "1" or "0", and the digital summer sees a 2-bit input for each sample pair. The sum-

mer is a state machine whose transitions depend on the two inputs and their present state

when clocked, and is implemented in programmable logic. The timing circuits provide two

clocks for each symbol interval, causing the summer to output a "1" if at least three of the

four samples were l's. If two or less samples were l's, a "0" is output.

After the fourth sample has been processed (near the end of a symbol period) the

outputs of the two summers are multiplexed into the MUX/Decoder, which differentially

decodes the data. These functions are also implemented in programmable logic arrays.

Serial data is output along with a data sync pulse to facillitate transfer to the receiving

device.

3.3 Revised System Design

As mentioned earlier due to schedule and funding constraint the a RAC filter was

implemented for the CMC processor, and BPSK demodulation was implemented. However,

the basic system architecture remains unchanged. In an earlier discussion it was established

that the system design parameter is taylored to the RAC chirp filters' performance specifi-

cations. In this case the RAC filter has a 20 MHz bandwidth and a time delay of 80/Jsec,

resulting in a chirp slope of .253 MHz per vsec. Consequently, the chirp transform proces-
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sor, of the convolve-multipy-convolve (CMC) type, has to be excited by a chirp waveform

with a repetition period of twice[ 1] the length of the chirp filter delay, i.e. 160/_sec. Each

data symbol of the incoming BPSK signal is made to coincide in time with each period of

the chirp waveform. During this period the transformation process occurs. Since in a BPSK

modulation system the symbol rate is equal to the bit rate, the data bit rate of this system

implementation is 1/(160/Jsec) or 6.25 KBPS. To insure the chirp waveform and the

incoming data to be in synchronism, data clock must be recovered. In this experiment it is

assumed that data clock is available.

A block diagram of the CMC processor is shown in Figure 3-28. The input filter has

an impulse response of a down chirp, implying that low frequency signals are delayed more

than high frequency signals. The center frequency of this filter is 70 MHz. The incoming

signal is multiplied with a chirp waveform that has an opposite slope in the mixer

(ZFM-1W). The chirp waveform is called the expander, which has to have a bandwidth and

period that is twice that of the chirp filter[l]. The baseband chirp waveform is generated by

the AMT-250, which is translated to a center frequency of 200 MHz by the SSB modulator.

The output center frequency of the signal from the mixer is centered at 270 MHz, as shown.

Since the output chirp filter center frequency is also 70 MHz a second mixer is used to

downconvert the expanded input signal to within the passband of the output chirp filter.

The output chirp filter has an identical impulse response as the input filter. Both filters has

a bandwidth of 20 MHz. The chirp filters are the RAC type and have a delay of 80/Jsec.

The performance of the CMC processor has been evaluated and the results are attached in

the appendix.

3.3.1 BPSK Test Modulator and Data Encoder

A BPSK modulator and data encoder were designed, built, and tested to be used for

testing the performance of the satellite receiver. The BPSK modulator/encoder is shown in

Figure 3-29A. The design is tailored to interface with BER test set model liP 4925B, which

has a RS-232 interface. Since.the RS-232 interface chip contains TrL-RS232 level conver-

-51-



"i5
0

0")

Ir N
l_q T
"0 'S"C)

_:- Block Diagram of CMC- Processor

-52-



sion circuits in both directions,the recovered data from the receiver, which is in TTL for-

mat, is also input to this chip for conversion to RS-232 and sent back to the BER test set.

The data input to the test modulator is clocked at 6.25 KHz. This data is differentially

encoded, level shifted to NRZ waveform, and sent to a mixer to biphase modulate a 70

MHz carrier. No prefiltering of the data is used for wave shaping prior to transmission. The

differential encoder circuit is shown in Figure 3-30A. At the output of the test modulator

facility is provided to inject noise for testing purpose.

3,3.2 Revised Demodulator an0 Data Decoder

The BPSK demodulator is shown in Figure 3-29B. The input to this demodulator is

the chirp transform pulses derived from the CIVIC processor. A carrier frequency (within 70

- 5 MHz) is embedded in the pulses. For a single channel input these pulses occur at the

repetition frequency of the chirp waveform. The relative phase of the carder from pulse to

pulse is determined by the data symbols. Since the signal is BPSK, the phase changes can

only be 180 °. An external CW signal which is at the same frequency and coherent to the

BPSK signal carder is mixed with the input chirp transform pulses. The result is a series of

pulses at the output of the mixer, which are essentially the envelope of the chirp transform

pulses. Depending on the current carrier phase the demodulated pulses are either positive

or negative. As a result of the transmission system parameters defined earlier, the expected

pulsewidth is approximately 200 nanoseconds. The demodulated pulses are detected in the

data decoder to recover the differentially encoded data. This decoder is basically a thresh-

old detector with adjustable positive and negative thresholds as shown in Figure 3-29B.

Finally the data is recovered, by the differential decoder. The differential decoder circuit is

shown in Figure 3-30B.

3.4 Close Loop BER P¢ff0rmance Test

Average BER performance of the satellite receiver is evaluated in the test set-up

shown in Figure 3-31. A picture of the actual receiver under test is shown in Figure 3-32. In

Figure 3-31 the satellite receiver, comprising the CMC processor, chirp waveform generator
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Eigc_L¢.._:- Receiver Under Test

AMT-150, SSB modulator, and BPSK demodulator/decision circuit,isrepresented by the

UUT (unitunder test).Coherent demodulation isrealizedby drivingthe BPSK modulator

(testsource) and the BPSK demodulator with the same 70 MHz signal(from HP8644B) and

by the adjustablephascshiftcr,as shown inthe diagram. To maintain system timing integ-

rity,data clock isderived from the internalreference 10 MHz frequency source of the

frequency synthesizer(HP8644B). The data clock isgenerated by dividingthisreference

frequency by 1600 to obtain 6.25KHz. This same clock signalisalsoused to controlthe

chirp wavcform repetitionfrequency of the AMT-250. For the same reason an externalhigh

frequency clock (100 MHz) signal,from a second signalgenerator,isinjectedintothe

AMT-250 for chirpwavcform generation.This 100 MHz externalclock isalsophasclockcd

to the 10 MHz reference frequency. The exactcharacteristicsof the baseband chirpwave-

form generated by the AMT-250 isgiven in Figure 3-33.Gaussian noise isadded to the test

signalfrom the BPSK modulator via a power combiner. This noise isbandlimited (20 MHz)

by a bandpass filter.An HP346B diode noise generator isthe primary source of noise,

which isamplified to the desired level.The signalto noise ratio(S/N) selectedfor each
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measurement is set by a variable attenuator. Taking into account the data bit rate of the

transmitted data and the noise bandwidth, an equivalent Eb/No is established for each S/N

setting. The instrument used for BER measurements is an HP4925B BER test set. This

instruments sends a repetitive PN-sequence, which is timed by the 6.25 KHz dock, to the

BPSK modulator. The recovered data from the satellite receiver (UUT) is sent back to the

BER test set for comparison.
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Figure 3-33:- Characteristics of Baseband Chirp Waveform From AMT-250
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Prior to BER measurements major signal characteristics at various point of the system is

recorded. In Figure 3-34 the transmitted data is shown before and after differential encod-

ing. This picture demonstrates the accuracy of the encoding circuit.

I .
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F_J.gllL¢,.._=_:- Transmitted Data Pattern

Figure 3-35A and B shows the relative phase change of the 70 MI-Iz carder signal from the

BPSK modulator at the data transitions. The frequency spectrum of the BPSK signal cen-

tered around 70 MHz is shown in Figure 3-36.

Figures 3-37A and B show the output of the CMC processor, which is the chirp trans-

form of the BPSK modulated signal. Figure 3-37A shows a state of the data symbol where

the chirp transform carrier is out of phase (180 ° ) with the reference carder (upper trace)

going into the BPSK demodulator, while Figure 3-37B shows the opposite situation. Figures
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3-38A and B show the BPSK demodulator output waveform when the reference carrier is

in-phase and out of phase with the chirp transform carrier. These figures clearly show the

familiar sinX/X shape.
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The output of the CMC processor with suppressed sidelobes are shown in Figures

3-39A, B, and C, displayed with various timebases of the oscilloscope to demonstrate alter-

nate views of the transformed waveform.

The demodulated output of these transform pulses are shown in Figures 3-40A and

3-40B corresponding to the detected data symbol "1"and "0" respectively. The decision

thresholds for data "1"and "0"are shown with respect to the demodulated transform pulses

in Figures 3-41A and B. The thresholds are adjustable and for this measurement they are

set at midpoints between the peak of the pulse and the highest peak of the side,lobes.

In an analysis conducted during the Phase II program it was concluded that the output

carrier frequency of a CMC processor is constant regardless of the input frequency. This

conclusion was made by neglecting frequency related terms in the close form solution of the

chirp transform, due to an erroneous assumption that they were negligible. During the test,

to verify this result, the error was discovered experimentally. By reinspecting the previously

obtained theoretical result both experimental and theoretical results are in agreement,
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when those frequency terms are included. The theoretical correction is included in the this

report's appendix. In Figure 3-42 the data transmitted is alternated between "1" and "0".

The upper trace is the transmitted data, and the lower trace is the received data, which is a

replica of the former. In this test the BPSK signal carder frequency is changed to 71 MHz

from 70 MHz. To demodulate the chirp transform pulses, a 71 MHz reference carrier must

be injected into the BPSK demodulator. The resulting transform pulses are shown in Fig-

ures 3-43A and B, for positive and negative going pulses respectively. This is proof that the

output carrier frequency of the CMC processor is also 71 MHz. The recovered data is

shown in lower trace of Figure 3-42. Figures 3-44A through C show the results of identical

experiments conducted with the input frequency set at 71.6 MHz.

The BER measurement results are shown in Figure 3-45. Comparing these results

with the theoretical BER performance curve[ 2] versus S/N is shown in Figure 3-46. By com-

paring the theoretical and measured BER performance it is clear that the measured Figure

3-41A, Decision threshold setting for positive transform pulse.
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result is approximately10dB worsethan the theoretical curve.The difference is due to the

decisionprocessin determiningwhether the receivedsymbolis aone or a zero. The theo-

retical performance curve is based on optimum sampling, where the demodulated pulses

are sampled at its peak and compared to a decision threshold. In the experiment the

demodulated pulses train are simply passed through a threshold detector. Each pulse is

approximately 200 nanoseconds wide, occuring every 160/zsec. In every symbol interval the

pulse is absent for approximately 159.8/zsec and the remainder of the repetition interval is

filled with noise only. Therefore, during the absence of a pulse, the noise voltage peaks can

still reach or exceed the threshold causing an erroneous decision, thus increasing the error

probability. In the theoretical case the decision circuit looks at the pulse only once per sym-

bol period, that is when the signal is present. Clearly, in the latter case, an erroneous deci-

sion can only be made during the presence of the demodulated pulse.

Average BER vs EblNo
ChirpTransform Coherent BPSK Demod.

-2

-3 \

_-4 iN

t__ 5

-6 \
\

-7
23 24 25 26 27 28 29 30

Eb/No in ribs

Fibre 3-45:- BER Measurement As A Function of Eb/N o
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3.5 Delivery ltem_;

The following softwares and hardwares, under this contract, will be delivered:

1) HIRAC Design Software.

2) Arbitrary Waveform Generator (Software, Hardware and Operating Mannual).

3) BPSK Demomulator and Modulator.

4) SSB Modulator.
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4.0 CONCLUSIONS

The demodulation and detection of BPSK signals derived from a CMC chirp trans-

form processor was experimentally demonstrated. The detection process had to be coheren-

tin order to maintain good error rate performance. Although the experiment was conducted

utilizing BPSK modulation, the detection technique applies also for QPSK modulation. The

measured BER performance is 10 dB worse than theory, because the decision circuit was

based on a simple threshold detector as opposed to optimum sampling each chirp transform

pulse at the symbol rate. By synchronizing the chirp repetition clock to the data symbol

timing, the data can easily be reconstructed from the chirp transform pulses. A technique

to demodulate and detect QPSK signals are also given, but not demonstrated due to sched-

ule and funding limitations.

The SAW filters in the CMC processor must be weighted to reduce time sidelobes, in

order to reduce channel-to-channel spiUover. In this experiment Taylor weighting was used,

which provides 32 dB of sidelobe suppression. For satellite communications application

major factors, such as symbo: rate, channel separation, system synchronization, carrier syn-

chronization," etc., have to be considered in the system design. The Phase II program has

revealed how these factors have to be implemented and how they are interrelated.
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6.0 APPENDICES

A1. THEORETICAL ANALYSIS OF THE CMC PROCESSOR

The model used for computer analysis of the CMC chirp transform process is shown

in Figure AI-1. The input and output filters have an impulse response with a positive slope

(i.e. up-chirp) as shown, where the rate of the linear frequency change is equal to 2k. The

chirp generator produces a linear frequency chirp that has a negative slope equal to -2k. It

has been shown elsewhere[ 1] that the time-bandwidth product of the input and output filters

has to be identical (BT), while the chirp generator time-bandwidth product must be at least

four times larger (4BT). Note that the input filter has an inherent characteristic of delaying

high frequency signals more than low frequency signals.

e_(Wot+kt2)

Wo

MULTIPLIER
e_(v2t+kt_ }

l (It, T

I o_(Vlt-kt2)

1_II, 2T)

O_It)

Fibre AI-1 :- Model of CMC Chirp Transformer
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To generalize the analysis, the input signal is represented in complex form, as follows:

Si(t ) - ejwst (A1-1)

The output of the input filter is delayed by d seconds, where d is dependent on the input

frequency ws, hence

Si(t.d) = ¢j_,s(t-d)

d = (tOs-_o)]2k

(A1-2)

(A1-3)

In the Multiplier, the product of the delayed input signal and the chirp signal is generated.

This product is convolved with the impulse response of the output filter to produce the

output signal So(t ) , therefore,

T/2-r

So(t ) = f x(t).y(t).hE(r-t)d(t:)
-T/2

For 0 < 7 <: T/2

Where, x(t) is given by (A1-2), and y(t) and h2(t ) are as follows,

y(t)= Exp[j(wlt-kt 2]

hE(t ) = Exp[j(t_ 2 + kt2)]

(AI-4)

(A1-5)

(A1-6)

Since the input signal Si(t ) is complex, the output, So(t ), of the processor is also complex. In

this analysis, only the real part of So(t ) is considered. It can be shown that,

Re[So(t)]= Cos[-wsd + w2r + kr 2 + k r]x (T-r)(Sincq) (A1-7)

Where,

c is defined as,

Sinc q = (Sin q)/q

q = [(w s + t_1-o2-2k,)(T-_- )/2]

= "r - (Ws+Wl_2)/2k

¢%, w o, t_l, and w 2, are as defined in Figure AI-1.

(A1-8)

Based on the above model, a computer analysis is performed to demonstrate the

transform output of a CW input signal. The CMC chirp transform parameters used for this
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purpose are as follows:

Input frequency: fs = 100 MHz

w s = 2_f s

Center frequency of input filter:

fo = lOO

Center frequency of output filter:

f2 = 300 MHz

Center frequency of the chirp:

fl = 200 MHz

Time-Bandwidth product of the input and output filters is:

BT = 512

Time-Bandwidth product of the chirp generator is:

4BT = 2048

The chirp slope is: 2k = 4.2x106_ Mrad/second

As can be seen from equations (A1-3) and (A1-8), when the input frequency fs is

equal to fo, d = 0, and _ = r. The computer analysis result is shown in Figure A1-2. The

output frequency is 300 MHz, and the envelope of the waveform is a (sinx)/x function as is

given by (A1-7). The width of the mainlobe (null-to-null) is approximately 60 nanoseconds,

and the peak of the largest sidelobe is 13.5 dB below the main peak as expected from the

(sinx)/x characteristic. In a multichannel communications system the sidelobes must be

suppressed to prevent adjacent channel interference. For that purpose a weighting function

can be designed into the SAW chirp filter. In what follows, sidelobe reduction is demon-

strated by utilizing Hamming weighting.

To reduce the sidelobes of the chirp transform output, Hamming weighting can be

incorporated in the SAW dispersive filter or in the chirp generator. In practice the basic

chirp waveform is generated by a software controlled digital circuit. Therefore, it is easier

to incorporate the weighting function in the chirp generator, hence the analysis is done with
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a weighted chirp waveform from the chirp generator. The generalized Hamming[.] weight-

ing function is given by:

W(t) = a + (1-a)Cos(_t/T) for -T < t < T (A1-9)
0<a<l

W(t) = 0 otherwise.

In complex form, the chirp function becomes:

y(t)= a.Exp[j(t_t-kt2)l + [(1-a)/2]{Exp j[(0_+_FF)t-kt 2] +

Exp j[(wt-_FF)t-kt2] } (A1-10)

The chirp transform output, Soh(t ), with Hamming weigthing is obtained by replacing

the chirp function y(t) in (A1-4) by (AI-10). By solving the resulting convolution integral

equation and taking its real value, the transform output, for 0 < r < T/2, is as follows:

RetSoh(t)] = a(T-r)Cost-wsd + (t_2 + k, )r + kr2][Sin k, (T-r)]/k, (T-r) +

[(1-a)(T-r )/2]Cos[-osd + (_2-_/2T + k, )r + kr 2] X
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{Sin[(_/T-2k, )(T-r)/2]}/[(x/T-2k, )(T-r)/2] +

[(1-a)(T-_r)/2]Cos[-wsd+ (w2+_/T+kc) r+kr 2 ] X

{ Sint(_/T + 2k, )(T-r)/2] }/[(x/T + 2k, )(T-r )/2] (AI-11)

Utilizing the above model the performance of the CMC chirp transform is simulated,

and the results shown in Figures A1-3, A1-4, A1-5, and A1-6. In Figure A1-3, the weighting

coefficient, a, is set to 1, which is equivalent to no weighting. As expected the result is iden-

tical to Figure A1-2. Subsequently, "a" is given values of .4, .5, and .54, respectively, and the

results are shown in Figures A1-4, A1-5, and A1-6. As can be seen, the sidelobes are reduced

relative to the mainlobe when compared to the results in Figures A1-2 and A1-3. Note, how-

ever, that the mainlobe is also slightly reduced, depending on the value of the weighting

coefficient. However, there are other weigthing functions that produces better sidelobe

!
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Fibre A1-3:- Transform Output With Hamming (Coeffident Set to 1)
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suppression, e.g. Taylor weighting.

'By examining equation (A1-7), it can be shown that the output frequency of the CMC

chirp transform is o 2 + (_s-_o)/2 + 2kc. At the center of the transform pulse _ = 0, and the

output frequency is w 2 + (_s-_o)/2. The phase response of the output carrier signal is:

¢(Ws) = [-osd ] Rad.

From (A1-3) and (A1-8), d and I- are as follows,

d = (_s-_o)/2k

"I"= (Os'_o)/2k + c

(A1-12)

(A1-13)

(A1-14)

By substituting (Al-13) and (Al-14) into (Al-12), the phase response, ¢(t_s), is obtained

and given by (Al-15).

¢(Os) = -(Ws "_o)['°s/k] radians (A1-15)

!
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t::
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Fi_mlre A 1-4:- Transform. Output With Hamming Weighting (Coefficient Set to 0.4)
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A2. EXPERIMENTAL RESULTS

To verify the theoretical results described above, an experimental circuit was built

using existing dispersive SAW filters. The circuit used for this experiment is shown in Fig-

ure .42-1, and the test set-up is shown in Figure A2-2. The dispersive SAW filters have the

following characteristics:

Center frequency: 70 MHz

Bandwidth (40 dO): 20 MHz

Weighting function: Taylor

Chirp slope: .253 MHz/#second

Time delay: 80 microseconds

el5V

-30c_B _ I

+7.SdBm

•
-7dBm

-7dB _T.---_ .

2001,_-Iz
OdBm

200MHz

/

AGC AMP
ZfM-IV ZFM-IV -30dO MAX. GAIN " _9dB

70MHz AMP

÷7dOn (2x)

CMC TRANSFORM PROCESSOR

_guI.¢,__l.:- CMC Transform Processor
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F._J.gg!.g.A_:- Test Set-Up for CMC Transform Procesor

Because both SAW filters operate at the same frequency, frequency conversions have

to be incorporated to construct the CMC processor so that its input and output center

frequencies are the same. This is accomplished by the two mixers, ZFM-1W, shown in

Figure A2-1. The chirp waveform generator and SSB modulator were developed for the

NASA/LEWIS SBIR Contract No. NAS3-25862. The output chirp waveform of the SSB

modulator is measured utilizing Hewlett Packard's 400 Msample/second digital oscillo-

scope, and the result is shown in Figure A2-3. In this diagram only the center part of the

chirp is shown, because of limited resolution of the plotter to cover the entire period of the

chirp. The chirp waveform was adjusted to be the same as the SAW filter chirp slope, i.e.

.253 MHz/psecond, and the chirp period is approximately 90 pseconds. Since the Time-

bandwidth product of the chirp generator has to be four times the SAW filter's, only the

center region of the dispersive filter's passband is used to obtain a proper transform output.

Imtially, the input frequency is tuned to 70MHz and the CMC processor output wave-

form is plotted as shown in Figure A2-4. As expected the output frequency is also 70 MHz.
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Subsequently, the input frequency is changed to 70.0015 MHz, and the output waveform is

recorded and shown in Figure A2-5. The output phase dependency on input frequency

implies that in order to obtain coherent demodulation of phase modulated signals, the car-

rier phase tracking circuit has to take into account the phase shift introduced by the CMC

processor.
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Figure A2-3:- Output Waveform of SSB Modulator
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A3. TEMPERATURE EFFECT ON CMC-PROCESSOR

Ambient temperature variations effect the performance of the CMC-Processor. The

source of these effects are common, that is due to temperature expansion of the SAW

devices. The input and output SAW dispersive filters of the CMC-Processor are made of

lithium niobate, LiNbO 3, crystal, which has a temperature expansion coefficient of 90

PpM/oC. Consequently, as the ambient temperature varies the delay of the filters increases

or decreases, so that the length T of the frequency dispersion expands or contracts with

varying temperature, resulting in changes of the time frequency slope (chirp slope) of the

impulse response of the filter. The latter effect is due to the slope's proportionality to B/T,

where B is the filter bandwidth. A change in the chirp slope causes time displacement of the

chirp transform output w.r.t, the frame. In addition, effect of ambient temperature varia-

tions also causes phase shifts in the carder of the chirp transform output. This effect, how-

ever, is compensated by the carrier tracking circuit of the QPSK demodulator. In what fol-

lows, these effects will be analyzed and quantified.

As can be seen from Equation (A1-7), the carrier phase shift is dependent on 'r,

where

O(tos,.r ) - (._sd) (A3-1)

and,

, = (to s + t01.t_2)/2k + _ (A3-2)

At the center of the transform output _ = 0, in this case • = 7 o" Since _" is effected by the

ambient temperature, the carrier phase shift is also effected, but as mentioned earlier the

carrier phase tracking circuit will compensate for this change. It is clear from Equa-

tion (A3-2) that • o is inversely proportional to k, where v = 2k is the chirp slope and

k =,tB/T. As T changes due to temperature variations, so will k. Using the system parame-

ters of the Advanced Satellite Communications Receiver, where B = 32.768 MHz and T =

15.625 vsec, and the temperature coefficient of the SAW material is 90 PPM/°C, the tem-

perature effect is predicted as follows:
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Let the ambient temperature (t) range be from -30°C to + 60°C, hence At = -90 °

and, w.r.t, ta = 25°C, the temperature variation range is -55°/+ 35°C. Therefore, the

change in the chirp period, AT = -.077 #seed + .049 #sec respectively. It can be shown from

(A2-7) that the width of the transform output pulse (sinx/x), i.e. null-to-null, is approxi-

mately 60 mec, therefore the temperature effect is significant.

The time displacement of the output pulse is derived from,

to= (Ws-_o)T/2_B

where the center of the input filter, _0o = t01-_ 2. The time reference axis is defined at % =

wo, where r o = 0.

gro/6T = (Ws_o)/2_B

:. 6r o = (%_o) AT/2_B (A3-3)

It is apparent from Equation (A3-3) that gr o is also dependent on the distance of the

input signal frequency from wo. This factor has to be taken into account upon designing the

temperature tracking circuit. In this analysis, only the extreme case at the edge of the band

is considered, that is when I1 'c%11is 102.9 Mrad/sec (16.384 MHz). At the extreme low

and high temperatures gr o is computed.

From Equation (A3-3), _r o is derived,

/Xro= .5_T (A3-4)

.'._ro= -.0385 tzsec -- ta= -30°C

t, ro= +.0245 #see -- ta- +60°C

Therefore, as ta varies from -30°C to + 60°C, for frequencies above and below _'o the

results are as follows,

For t,,>wo, gr o is within -.0385 #sec/+ .0245 #sec, relative to gr o at 25°C.

For _o<_0o, 6r o is wihtin + .0385 #seed-.0245 #sec, relative to 6r o at 25°C.

Note that at the center frequency, ws = wo, although _r o = 0 the transform output

time reference axis is shifted, with respect to the chirp generator timebase, when the

ambient temperature changes. This time shift is due to the basic time delay (r, #sec at

A3-2



25oc) of the SAW filter, which also varies with temperature directly proportional to the

temperature expansion coefficient of the SAW crystal.

In the implementation of the temperature compensation and tracking circuit, a CW refer-

ence signal could be injected into the CMC-Processor and monitored at the output. The

time shift due to ambient temperature variations monitored at the output of the CMC-

Processor would include tw o and Arr" The latter is common for all input frequencies,

therefore, at any other frequency a correction has to be made to account for Arr. In ease of

the Advanced Satellite Communications Receiver, a correction factor (Ft) can be predeter-

mined based on the system parameters.

Let t%r be the reference signal frequency, r r the basic delay at the center frequency

w o and ta = 25oc, and C the temperature expansion coefficient of the SAW crystal.

Hence, at an ambient temperature of t 1, the reference signal at the CMC-Processor output

is delayed (w.r.t. the chirp transform frame period T) by r tr, where

rt_= rr(1 +At.C) + (_sr_o)(1 +At.C)T/2_B (A3-5)

The first term in Equation (A3-5) is due to the change in basic delay (temperature

expansion). "i'he second term is due to the change in time displacement of the output trans-

form pulse w.r.t, the chirp generator timebase or frame (caused by a change in chirp slope).

The delay at ws is,

rts = %(1 +At.C) + (_s-_o)(1 + At.C)T/2aB (A3-6)

.'. A_" = "rts-rtr = (Ws-_sr)(1 +At.C__aB (A3-7)

From Equations (A3-5) and (A3-7), Arlrtr is derived.

A'r/z tr = [(ws.-Wsr)T/2aB]/[_" r + (_0s--Wo)T/2a B] (A3-8)

From Equation (A3-7), rts = rtr + At, this can be rewritten as

rts = (1 +A'r/'r tr)'r tr (A3-9)

Consequently, from Equation (A3-9) the correction factor (FT) for rts is obtained.

FT= 1 +Ar/'rtr (A3-10)
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Where Ar/r tr is given by Equation (A3-8).

Since for a given channel of the Advanced Satellite Communications Receiver, contain-

ing a CMC-Processor, each variable in Equation (A3-8) is known a priori, the correction

factor for temperature compensation and tracking can be computed and taken into account.

In practice, the development of an automatic tracking circuit is recommended.
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